

# FM8128E 超高频四通道读写器 使用说明书

# 引言

#### 1.1. 编写目的

本说明书旨在阐述复旦微超高频 RFID 读写器的基本参数、产品功能和一些使用的注意事项,为读写器的使用人员提供技术和使用参考。

# 1.2. 产品背景

复旦微 FM8128E 超高频四通道读写器(以下简称读写器)适用于 EPC 协议、GB/T 29768-2013,以及基于 EPC 的扩展协议和基于 GB 的扩展协议。可以识别并操作标准的 EPC 标签、GB 标签,以及符合相同扩展协议的 EPC 和 GB 标签。

# 1.3. 产品特点

复旦微读写器具有高集成度、高可靠性、高灵敏度等特点。可以灵活配置通信参数,有很高的接收灵敏度。另外扩展了基于 SM7 国密算法的鉴别功能,可以对符合相关扩展协议的超高频标签进行操作。

- 高灵敏度: 在噪声环境下也可以很好工作。
- 配置灵活:输出功率,通信参数可调,可以满足不同场合的操作要求。
- 稳定可靠:输出功率经过校准,软件实时监测电路状态。

使用说明书 版本 0.1 第 2页

# 2. 产品简介

# 2.1. 规格参数

# 2.1.1. 电气参数

表 1 电气参数

|         | 状态          | 最小值 | 典型值     | 最大值  | 单位   |
|---------|-------------|-----|---------|------|------|
|         | 1八心         | 取小阻 | 典望徂     | 取八徂  | - 半世 |
| 频率      |             |     |         |      |      |
| 频率范围1   |             | 840 |         | 845  | MHz  |
| 频率范围 2  |             | 920 | 922.375 | 925  | MHz  |
| 输出      |             |     |         |      |      |
| 输出功率    | 50Ω负载       | 10  |         | 30   | dBm  |
| 步进      |             |     | 1       |      | dB   |
| 温度范围    |             |     |         |      |      |
| 存储温度    |             | -40 |         | 85   | °C   |
| 工作温度[1] |             | -15 |         | 60   | °C   |
| 电源电流[2] |             |     |         |      |      |
| 供电电压    |             | 5   | 5       | 12   | V    |
| 工作模式    | @30dBm 输出功率 |     | 1500    | 1800 | mA   |
| 待机模式    |             |     | 330     | 400  | mA   |

<sup>[1]</sup>低温运行时需要进行额外参数配置

# 2.1.2. 通信参数

- 工作频率: **840MHz 960MHz** (软件可配置)
- 输出功率: ≤30dBm(软件可配置)
- 通信规约: ISO/IEC 18000-6C、GB/T 29768-2013、EPC+SM7 扩展协议(可选)、GB+SM7 扩展协议(可选)、EPC+温度测量扩展协议(可选)
- 识别距离: 0-8m(实际效果和天线、标签类型、环境有关)
- 控制接口: USB\*1、RJ45\*1
- 天线接口: TNC\*4

<sup>[2]</sup>电流参数在 5V 条件下测试

# 2.2. 外形结构

- 读写器外形长\*宽\*高为 211\*156\*40 (单位 mm)
- 电源接口由外部直流源供电,接口为 USB 和 RJ45



图 1 产品外形

# ● 面板定义

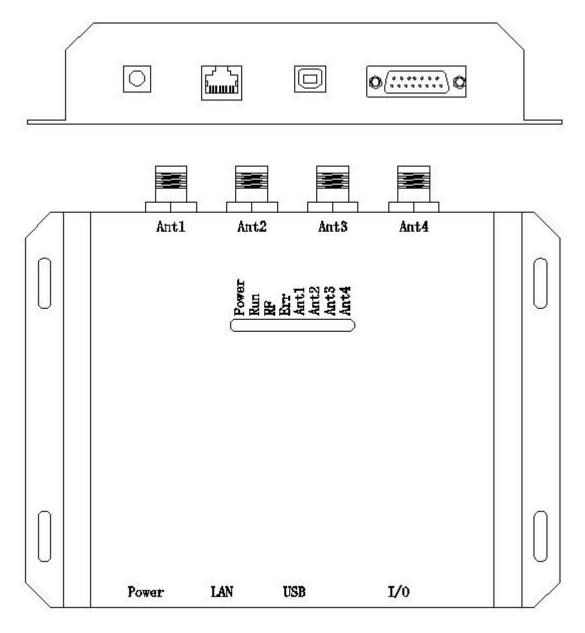



图 2 面板定义

# 2.3. 接口说明

- USB接口传输层为HID协议。
- RJ45 接口传输层为 UDP 和 TCP/IP 协议。
- 应用层采用复旦微专用协议。
- GPIO 接口预留(可执行定制化功能)

#### 2.4. 基本功能

#### 2.4.1. 参数修改

可以对如下表通信参数进行修改:

表 2 通信参数

| 参数   | 最小值 | 默认值     | 最大值 | 单位  | 备注                           |  |
|------|-----|---------|-----|-----|------------------------------|--|
| 输出功率 | 10  | 25      | 30  | dBm | 外部直流源,额定电流大于 2A              |  |
| 通信频率 | 840 |         | 845 | MII | 中国划定的超高频 RFID 频段为            |  |
|      | 920 | 922.375 | 925 | MHz | 840MHz-845MHz, 920MHz-925MHz |  |
| 回发速率 | 40  | 200     | 640 | kHz | 实际波特率和编码方式有关                 |  |

#### 2.4.2. EPC 盘点

能够一次同时盘点多个标签。将射频场内全部可识别 EPC 标签的 EPC 数据获取。

# 2.4.3. EPC 读写

可以对盘点到的指定EPC标签内部的数据区进行读写操作。

#### 2.4.4. EPC 国密 SM7 读写

对指定标签内部数据进行国密 SM7 读写操作。当读写器和标签认证通过时,可以对标签进行操作。

# 2.4.5. EPC 测温功能

对指定测温标签进行参数配置、数据访问、获取温度、启动测温等操作。

#### 2.4.6. GB 盘点

能够一次同时盘点多个标签。将射频场内全部可识别 GB 标签的 EPC 数据获取。

#### 2.4.7. GB 读写

可以对盘点到的指定标签内部的数据区进行读写操作。

# 2.4.8. GB 国密 SM7 读写

对指定标签内部数据进行国密 SM7 读写操作。当读写器和标签认证通过时,可以对标签进行操作。

# 3. 应用说明

#### 3.1. 供电条件

- 读写器开启射频场时,根据输出功率及供电电压的不同,需要的适配器电流也不同。这对于外部电源有一定要求。需要选配功率足够的电源,一般选用 5V/2A~12V/2A 的适配器。
- 请注意读写器电源电压不能过高,否则会烧坏设备,最大输入电压不能超过 12V。
- 读写器默认不支持 POE 供电,如果需要相关功能,可以咨询复旦微电子。

#### 3.2. 连接事宜

- 读写器正常工作时需要外部电源连接。
- 建议先连接外部电源,再连接 USB 线或网口线。
- 通过 USB 接口连接读写器时,可以在没有外部电源的情况下,通过软件访问设备。但设备会因为自检失败,无法正常工作。重新连接外部电源 30 秒内,设备会恢复正常。
- 如果正常工作中,外部电源异常断电,设备会自检报错。并可以在恢复供电的30秒内, 重新正常连接访问。

#### 3.3. 天线事宜

- 为了更好的通信效果,建议在机械结构允许的条件下,选用应用频段内增益大、驻波小的天线。
- 请确认天线已经正确连接后再开启读写器。读写器启动时会进行自校准,如果开机时天 线未连接,会影响射频精度。
- 不要频繁连接天线,否则可能磨损馈线和接口,从而影响系统性能。
- 如果应用中天线和读写器距离较远,需要选用较长的射频馈线,建议选用较好线材。具体事宜可以咨询复旦微电子。

#### 3.4. GPIO 功能

- GPIO 需要外部供电。输入电压范围 0 24V。
- 支持 4 路输入通道和 4 路输出通道(包含 1 路 UART 接口)。输入电压范围 0 12V。输

出电压范围由外部供电电压决定,最大输出电流 500mA (由外部电源提供)

● GPIO 如需要定制化功能,可以咨询复旦微电子

# 3.5. 加密功能

● 如果应用中涉及到安全算法相关扩展协议,读写器支持内置 ESAM、PSAM 卡以及外部 认证等方式。具体事宜可以咨询复旦微电子。